Current stance detection research typically relies on predicting stance based on given targets and text. However, in real-world social media scenarios, targets are neither predefined nor static but rather complex and dynamic. To address this challenge, we propose a novel task: zero-shot stance detection in the wild with Dynamic Target Generation and Multi-Target Adaptation (DGTA), which aims to automatically identify multiple target-stance pairs from text without prior target knowledge. We construct a Chinese social media stance detection dataset and design multi-dimensional evaluation metrics. We explore both integrated and two-stage fine-tuning strategies for large language models (LLMs) and evaluate various baseline models. Experimental results demonstrate that fine-tuned LLMs achieve superior performance on this task: the two-stage fine-tuned Qwen2.5-7B attains the highest comprehensive target recognition score of 66.99%, while the integrated fine-tuned DeepSeek-R1-Distill-Qwen-7B achieves a stance detection F1 score of 79.26%.
Stance detection is an established task that classifies an author's attitude toward a specific target into categories such as Favor, Neutral, and Against. Beyond categorical stance labels, we leverage a long-established affective science framework to model stance along real-valued dimensions of valence (negative-positive) and arousal (calm-active). This dimensional approach captures nuanced affective states underlying stance expressions, enabling fine-grained stance analysis. To this end, we introduce DimStance, the first dimensional stance resource with valence-arousal (VA) annotations. This resource comprises 11,746 target aspects in 7,365 texts across five languages (English, German, Chinese, Nigerian Pidgin, and Swahili) and two domains (politics and environmental protection). To facilitate the evaluation of stance VA prediction, we formulate the dimensional stance regression task, analyze cross-lingual VA patterns, and benchmark pretrained and large language models under regression and prompting settings. Results show competitive performance of fine-tuned LLM regressors, persistent challenges in low-resource languages, and limitations of token-based generation. DimStance provides a foundation for multilingual, emotion-aware, stance analysis and benchmarking.
Online hate on social media ranges from overt slurs and threats (\emph{hard hate speech}) to \emph{soft hate speech}: discourse that appears reasonable on the surface but uses framing and value-based arguments to steer audiences toward blaming or excluding a target group. We hypothesize that current moderation systems, largely optimized for surface toxicity cues, are not robust to this reasoning-driven hostility, yet existing benchmarks do not measure this gap systematically. We introduce \textbf{\textsc{SoftHateBench}}, a generative benchmark that produces soft-hate variants while preserving the underlying hostile standpoint. To generate soft hate, we integrate the \emph{Argumentum Model of Topics} (AMT) and \emph{Relevance Theory} (RT) in a unified framework: AMT provides the backbone argument structure for rewriting an explicit hateful standpoint into a seemingly neutral discussion while preserving the stance, and RT guides generation to keep the AMT chain logically coherent. The benchmark spans \textbf{7} sociocultural domains and \textbf{28} target groups, comprising \textbf{4,745} soft-hate instances. Evaluations across encoder-based detectors, general-purpose LLMs, and safety models show a consistent drop from hard to soft tiers: systems that detect explicit hostility often fail when the same stance is conveyed through subtle, reasoning-based language. \textcolor{red}{\textbf{Disclaimer.} Contains offensive examples used solely for research.}
We introduce DNIPRO, a novel longitudinal corpus of 246K news articles documenting the Russo-Ukrainian war from Feb 2022 to Aug 2024, spanning eleven media outlets across five nation states (Russia, Ukraine, U.S., U.K., and China) and three languages (English, Russian, and Mandarin Chinese). This multilingual resource features consistent and comprehensive metadata, and multiple types of annotation with rigorous human evaluations for downstream tasks relevant to systematic transnational analyses of contentious wartime discourse. DNIPRO's distinctive value lies in its inclusion of competing geopolitical perspectives, making it uniquely suited for studying narrative divergence, media framing, and information warfare. To demonstrate its utility, we include use case experiments using stance detection, sentiment analysis, topical framing, and contradiction analysis of major conflict events within the larger war. Our explorations reveal how outlets construct competing realities, with coverage exhibiting polarized interpretations that reflect geopolitical interests. Beyond supporting computational journalism research, DNIPRO provides a foundational resource for understanding how conflicting narratives emerge and evolve across global information ecosystems.
Large language models (LLMs) are reshaping automated fact-checking (AFC) by enabling unified, end-to-end verification pipelines rather than isolated components. While large proprietary models achieve strong performance, their closed weights, complexity, and high costs limit sustainability. Fine-tuning smaller open weight models for individual AFC tasks can help but requires multiple specialized models resulting in high costs. We propose \textbf{multi-task learning (MTL)} as a more efficient alternative that fine-tunes a single model to perform claim detection, evidence ranking, and stance detection jointly. Using small decoder-only LLMs (e.g., Qwen3-4b), we explore three MTL strategies: classification heads, causal language modeling heads, and instruction-tuning, and evaluate them across model sizes, task orders, and standard non-LLM baselines. While multitask models do not universally surpass single-task baselines, they yield substantial improvements, achieving up to \textbf{44\%}, \textbf{54\%}, and \textbf{31\%} relative gains for claim detection, evidence re-ranking, and stance detection, respectively, over zero-/few-shot settings. Finally, we also provide practical, empirically grounded guidelines to help practitioners apply MTL with LLMs for automated fact-checking.
Annotator disagreement is widespread in NLP, particularly for subjective and ambiguous tasks such as toxicity detection and stance analysis. While early approaches treated disagreement as noise to be removed, recent work increasingly models it as a meaningful signal reflecting variation in interpretation and perspective. This survey provides a unified view of disagreement-aware NLP methods. We first present a domain-agnostic taxonomy of the sources of disagreement spanning data, task, and annotator factors. We then synthesize modeling approaches using a common framework defined by prediction targets and pooling structure, highlighting a shift from consensus learning toward explicitly modeling disagreement, and toward capturing structured relationships among annotators. We review evaluation metrics for both predictive performance and annotator behavior, and noting that most fairness evaluations remain descriptive rather than normative. We conclude by identifying open challenges and future directions, including integrating multiple sources of variation, developing disagreement-aware interpretability frameworks, and grappling with the practical tradeoffs of perspectivist modeling.
Large language models increasingly function as artificial reasoners: they evaluate arguments, assign credibility, and express confidence. Yet their belief-forming behavior is governed by implicit, uninspected epistemic policies. This paper argues for an epistemic constitution for AI: explicit, contestable meta-norms that regulate how systems form and express beliefs. Source attribution bias provides the motivating case: I show that frontier models enforce identity-stance coherence, penalizing arguments attributed to sources whose expected ideological position conflicts with the argument's content. When models detect systematic testing, these effects collapse, revealing that systems treat source-sensitivity as bias to suppress rather than as a capacity to execute well. I distinguish two constitutional approaches: the Platonic, which mandates formal correctness and default source-independence from a privileged standpoint, and the Liberal, which refuses such privilege, specifying procedural norms that protect conditions for collective inquiry while allowing principled source-attending grounded in epistemic vigilance. I argue for the Liberal approach, sketch a constitutional core of eight principles and four orientations, and propose that AI epistemic governance requires the same explicit, contestable structure we now expect for AI ethics.
The widespread proliferation of online content has intensified concerns about clickbait, deceptive or exaggerated headlines designed to attract attention. While Large Language Models (LLMs) offer a promising avenue for addressing this issue, their effectiveness is often hindered by Sycophancy, a tendency to produce reasoning that matches users' beliefs over truthful ones, which deviates from instruction-following principles. Rather than treating sycophancy as a flaw to be eliminated, this work proposes a novel approach that initially harnesses this behavior to generate contrastive reasoning from opposing perspectives. Specifically, we design a Self-renewal Opposing-stance Reasoning Generation (SORG) framework that prompts LLMs to produce high-quality agree and disagree reasoning pairs for a given news title without requiring ground-truth labels. To utilize the generated reasoning, we develop a local Opposing Reasoning-based Clickbait Detection (ORCD) model that integrates three BERT encoders to represent the title and its associated reasoning. The model leverages contrastive learning, guided by soft labels derived from LLM-generated credibility scores, to enhance detection robustness. Experimental evaluations on three benchmark datasets demonstrate that our method consistently outperforms LLM prompting, fine-tuned smaller language models, and state-of-the-art clickbait detection baselines.
Detecting hyperpartisan narratives and Population Replacement Conspiracy Theories (PRCT) is essential to addressing the spread of misinformation. These complex narratives pose a significant threat, as hyperpartisanship drives political polarisation and institutional distrust, while PRCTs directly motivate real-world extremist violence, making their identification critical for social cohesion and public safety. However, existing resources are scarce, predominantly English-centric, and often analyse hyperpartisanship, stance, and rhetorical bias in isolation rather than as interrelated aspects of political discourse. To bridge this gap, we introduce \textsc{PartisanLens}, the first multilingual dataset of \num{1617} hyperpartisan news headlines in Spanish, Italian, and Portuguese, annotated in multiple political discourse aspects. We first evaluate the classification performance of widely used Large Language Models (LLMs) on this dataset, establishing robust baselines for the classification of hyperpartisan and PRCT narratives. In addition, we assess the viability of using LLMs as automatic annotators for this task, analysing their ability to approximate human annotation. Results highlight both their potential and current limitations. Next, moving beyond standard judgments, we explore whether LLMs can emulate human annotation patterns by conditioning them on socio-economic and ideological profiles that simulate annotator perspectives. At last, we provide our resources and evaluation, \textsc{PartisanLens} supports future research on detecting partisan and conspiratorial narratives in European contexts.
Public debates surrounding infrastructure and energy projects involve complex networks of stakeholders, arguments, and evolving narratives. Understanding these dynamics is crucial for anticipating controversies and informing engagement strategies, yet existing tools in media intelligence largely rely on descriptive analytics with limited transparency. This paper presents Stakeholder Suite, a framework deployed in operational contexts for mapping actors, topics, and arguments within public debates. The system combines actor detection, topic modeling, argument extraction and stance classification in a unified pipeline. Tested on multiple energy infrastructure projects as a case study, the approach delivers fine-grained, source-grounded insights while remaining adaptable to diverse domains. The framework achieves strong retrieval precision and stance accuracy, producing arguments judged relevant in 75% of pilot use cases. Beyond quantitative metrics, the tool has proven effective for operational use: helping project teams visualize networks of influence, identify emerging controversies, and support evidence-based decision-making.